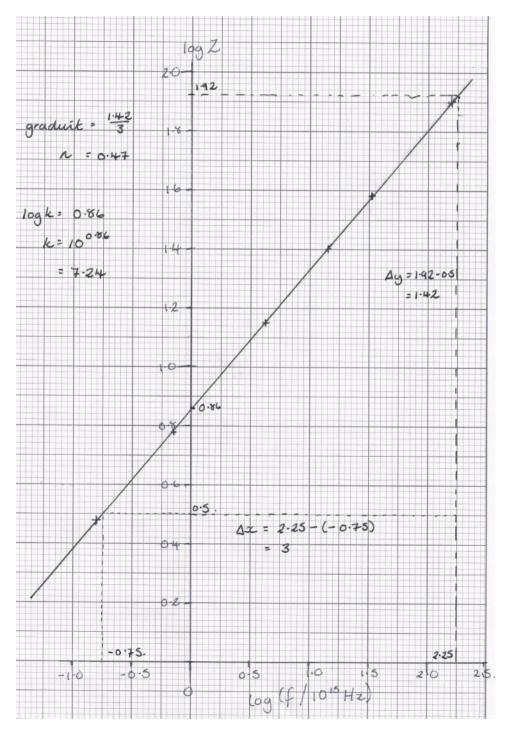
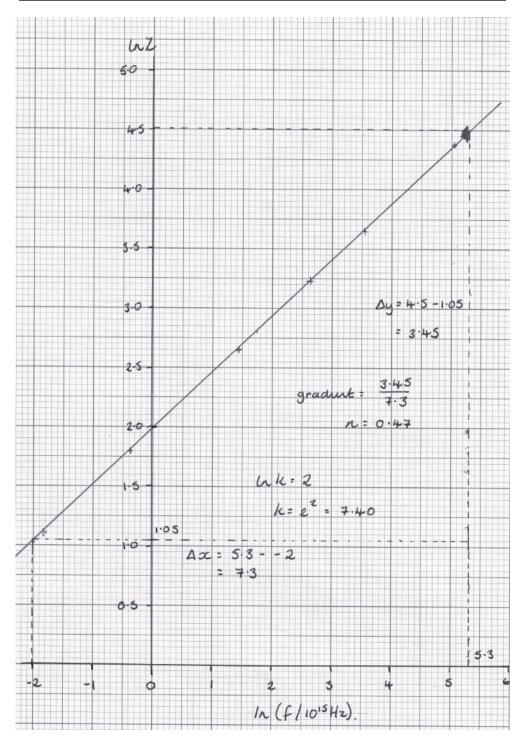


Mark Scheme (Results)

June 2022


Pearson Edexcel
International Advanced Level
in Physics (WPH16)
Paper 01 Practical Skills in Physics II

Question Number	Answer		Mark
1 (a)(i)	5 (°C)	(1)	1
1 (a)(ii)	The resolution of the stopwatch is better (than the resolution of the thermometer) Therefore there will be a smaller (percentage) uncertainty (in temperature) Or	(1) (1)	
	Using fixed interval of time the temperature may be between values of temperature on the scale which will lead to a larger (percentage) uncertainty (in temperature)	(1) (1)	2
	MP2 dependent on MP1		
	Do not accept precision for resolution		
1 (b)(i)	Mass (of liquid) Or Flow rate (of the steam) Or Position of control tap	(1)	1
	Ignore reference to amount and temperature [Do not accept volume]		
1 (b)(ii)	Line starts at 10 °C	(1)	
	Line drawn below and curved with decreasing gradient Temperature 20 15 10 Time/s	(1)	2
1 (c)	Any TWO from		
	More readings can be taken in a given time	(1)	
	Measurements (of θ and t) can be taken simultaneously The temperature probe will have a smaller resolution	(1)(1)	2
	Total for question 1		8


Question Number	Answer		Mark
2 (a)	Method to ensure rubber band is level	(1)	
	Measure distance L with a metre rule [Accept Vernier calipers]		
	Repeat for at least 5 different values of L		
	Plot a graph of $\log P$ against $\log L$ to check it is a straight line		
		(1)	
	Any TWO from:	(1)	
	Ensure the ruler is vertical using the set square	(1)	
	Measure a number of cycles and divide by the number of cycles to get	(1) (1)	
	Repeat the measurement (of P) and calculate a mean	(1)	
		(1)	
		(1)	6
2 (b)	It may be difficult to judge the exact moment the pendulum stops moving	(1)	
	Motion can be viewed more slowly so minimum can be found more reliably		
	Or Motion can be viewed more slowly which reduces effect of reaction time	(1)	2
	Total for question 2		8

Question Number	Answer		Mark
3 (a)	$\log Z = \log k + n \log f$	(1)	
	Is in the form $y = c + mx$ with a constant gradient $(= n)$	(1)	
	Or		
	$\log Z = n \log f + \log k$	(1)	
	Is in the form $y = mx + c$ with a constant gradient $(= n)$	(1)	2
	MP2 dependent on MP1		
3 (b)(i)	Values of log Z correct to 2 d.p. [Accept ln values, 3 d.p.]	(1)	
	Values of log f correct to 2 d.p. [Accept ln values, 3 d.p.]	(1)	
	Axes labelled: y as $\log Z$ and x as $\log (f/10^{15} \text{Hz})$ [Accept ln for ln values]	(1)	
	Appropriate scales chosen	(1)	
	log values plotted accurately	(1)	
	Best fit line drawn	(1)	6
		, ,	
3 (b)(ii)	Gradient calculation using correct data and large triangle shown	(1)	
	Value of n in range 0.45 to 0.49,	(1)	
	to 2 or 3 s.f, no unit	(1)	3
	Example of calculation		
	n = (1.92 - 0.5) / (2.250.75) = 1.42 / 3 = 0.47		
3 (b)(iii)	Correct value of y intercept shown	(1)	
	Value of k in range 6.9 to 7.3 [e.c.f. for value of n in (b)(ii)]	(1)	
	Value given to 2 or 3 s.f.,	(1)	3
	Example of calculation		
	Log k = 0.86		
	$k = 10^{0.86} = 7.24$		
3 (c)	Either		
	States mathematical relationship using calculated values of n (and k)	(1)	
	Conclusion based on comparison with $Z \propto f^{0.5}$	(1)	
	Or		
	A graph of $\log Z$ against $\log f$ would be a straight line with a gradient of 0.5	(1)	
	Conclusion based on comparison with calculated <i>n</i>	(1)	2
	Total for question 3		16

Element	Z	$f/10^{15}\mathrm{Hz}$	$\log Z$	$\log (f/10^{15} \mathrm{Hz})$
Li	3	0.16	0.48	-0.80
С	6	0.69	0.78	-0.16
Si	14	4.19	1.15	0.62
Mn	25	13.82	1.40	1.14
Sr	38	33.98	1.58	1.53
Hg	80	154.64	1.90	2.19

Element	Z	$f/10^{15}\mathrm{Hz}$	ln Z	ln (f/10 ¹⁵ Hz)
Li	3	0.16	1.10	-1.83
С	6	0.69	1.79	-0.37
Si	14	4.19	2.64	1.43
Mn	25	13.82	3.22	2.63
Sr	38	33.98	3.64	3.53
Hg	80	154.64	4.38	5.04

Question Number	Answer	Mark
4 (a)(i)	Digital calipers have a smaller resolution [Accept converse] (1)	
	Calculation of percentage uncertainty using (half) resolution shown (1)	
	%U for Vernier = 0.8% and %U digital = 0.08% (1)	
	Hence the percentage uncertainty for digital calipers will be smaller (1)	4
	Example of calculation	
	%U in Vernier reading = $0.05 / 6.6 \times 100 = 0.8$ %	
	%U in digital reading = $0.005 / 6.58 \times 100 = 0.08$ %	
4 (a)(ii)	Any PAIR from:	
	Repeat at different orientations and calculate a mean (1)	
	Hence reduces (the effect of) <u>random errors</u> (1) Or	
	Check and correct for zero error [Accept suitable method] (1)	
	Hence eliminates <u>systematic error</u> (1)	2
4 (2)(::)	Man 4 = 6.55 (mm)	
4 (a)(iii)	Mean $d = \underline{6.55}$ (mm) (1)	
	Calculation using half range shown [Accept furthest from mean] (1) Liposetsints in $d = 0.03$ (mm)	2
	Uncertainty in $d = \underline{0.03}$ (mm) (1)	3
	Example of calculation	
	Mean $d = (6.57 + 6.58 + 6.54 + 6.52) / 4 = 26.21 / 4 = 6.55 \text{ (mm)}$	
	Uncertainty = $(6.58 - 6.52) / 2 = 0.06 / 2 = 0.03 \text{ (mm)}$	

4 (b)	Use of $2 \times \%$ U in s or d shown	(1)	
	Calculation of U in s^2 or d^2 using $2 \times \%$ U shown	(1)	
	Addition of U in s^2 and U in d^2 shown	(1)	
	$U = 0.011 \text{ (cm}^2)$	(1)	4
	Example of calculation		
	%U in $s^2 = 2 \times (0.02 / 16.83) \times 100 = 2 \times 0.12\% = 0.24 \%$		
	U in $s^2 = 1.683^2 \times 0.24 \% = 6.80 \times 10^{-3} \text{ cm}^2$		
	%U in $d^2 = 2 \times (0.04 / 8.55) \times 100 = 2 \times 0.47\% = 0.94 \%$		
	U in $d^2 = 0.855^2 \times 0.94 \% = 6.87 \times 10^{-3} \text{ cm}^2$		
	U in $A = (6.80 \times 10^{-3} \times \sqrt{3}) / 2 + (6.87 \times 10^{-3} \times \pi) / 4$		
	$= 5.89 \times 10^{-3} + 5.40 \times 10^{-3} = 0.011 \text{ cm}^2$		
	Or		
	Use of correct absolute uncertainties for <i>s</i> and <i>d</i>		
	Use of maximum and minimum values to calculate limit of A shown		
	Correct value of maximum or minimum A		
	Subtraction to obtain uncertainty in A approximately 0.01 cm ²		
	MP4 dependent on MP3		
	Example of calculation		
	minimum $s^2 = (1.683 - 0.002)^2 = 1.681 \text{ cm}^2$		
	maximum $d^2 = (0.855 + 0.004)^2 = 0.738 \text{ cm}^2$		
	minimum $A = \sqrt{3} \times 1.681/2 - \pi \times 0.738/4 = 1.867 \text{ cm}^2$		
	uncertainty in $A = 1.88 - 1.867 = 0.013 \text{ cm}^2$		
4 (c)(i)	Use of $\rho = m / Ax$	(1)	
	$\rho = 6.91 \text{ g cm}^{-3}$ [3 s.f. only]	(1)	2
	[Accept 6.92 g cm ⁻³]		
	Example of calculation		
	$\rho = 10.3 / (1.88 \times 0.792) = 10.3 / 1.49 = 6.91 \text{ g cm}^{-3}$		
			<u> </u>

	Total for question 4		18
	As % D for lower value is greater than the %U then the hexagonal metal nut is not made from steel.		
	Example of calculation %U in $\rho = (0.1 / 10.3) \times 100 + (0.01 / 1.88) \times 100 + (0.03 / 7.92) \times 100$ = 0.97 % + 0.53 % + 0.38 % = 1.88 % %D = (7.85 - 6.91) / 7.85 × 100 = 12 %		
	Calculation of %U in ρ shown Correct calculation of relevant %D shown [e.c.f. (c)(i)] Conclusion based on comparison of %D and %U [MP3 dependent MP2]	(1) (1) (1)	3
	As the maximum value is lower than 7.85 g cm ⁻³ the hexagonal metal nut is not made from steel. Or		
	Example of calculation Maximum $\rho = (10.3 + 0.1) / ((0.792 - 0.003) \times (1.88 - 0.01) = 7.05 \text{ g cm}^{-3}$		
	Conclusion based on comparison of maximum or minimum ρ with calculated ρ $[MP3\ dependent\ MP2]$	(1)	
	Maximum $\rho = 7.05 \text{ g cm}^{-3}$ Or Minimum $\rho = 6.79 \text{ g cm}^{3}$	(1)	
	Use of maximum or minimum values shown	(1)	
	made from steel. Or		
	As the upper limit is lower than 7.85 g cm ⁻³ the hexagonal metal nut is not		
	= 0.97 % + 0.53 % + 0.38 % = 1.88 % Upper limit of ρ = 6.91 × (1 + 0.0188) = 7.04 g cm ⁻³		
	Example of calculation %U in $\rho = (0.1 / 10.3) \times 100 + (0.01 / 1.88) \times 100 + (0.03 / 7.92) \times 100$		
	[MP3 dependent MP2]		
	Conclusion based on comparison of limit and calculated ρ	(1)	
4 (c)(ii)	Calculation of %U in ρ shown Correct calculation of relevant limit using %U shown [e.c.f. (c)(i)]	(1) (1)	